Monday, April 17, 2006

Education against politicized science

An interesting article just appeared on PLoS - Biology:
Scientific Illiteracy and the Partisan Takeover of Biology (PDF). Here are a couple of short excerpts - you have to go and read the rest:
Though some see the growing influence of ideology over scientific issues as a threat to America's standing as global science leader, a leading analyst of public attitudes toward science sees it as an opportunity for increasing scientific literacy. “Even though the scientific community can feel besieged by this anti-science sentiment,” says Jon D. Miller, who directs the Center for Biomedical Communications at Northwestern University Medical School, “most people really haven't made up their mind about this issue and, in fact, really haven't even thought about it.” Rather than fretting about the cultural divide—or worse, doing nothing—Miller urges scientists to do their part to bridge the gap.
Most people don't have a cognitive framework for understanding stem cells, Miller explains. “Science happens so fast now that most adults couldn't possibly have learned about stem cells when they were in school.” And without this underlying schema, most people aren't going to pay attention to stem cells or any other unfamiliar scientific term. “People tune out things that they think are scientific or complicated,” he says. “If you are science averse and think you couldn't possibly know any science, the minute you hear ‘cell,’ ‘stem cell,’ ‘nanotechnology,’ ‘atomic,’ ‘nuclear,’ you turn the off switch.”
Since 1979, he says, the proportion of scientifically literate adults has doubled—to a paltry 17%. The rest are not savvy enough to understand the science section of The New York Times or other science media pitched at a similar level. As disgracefully low as the rate of adult scientific literacy in the United States may be, Miller found even lower rates in Canada, Europe, and Japan—a result he attributes primarily to lower university enrollments.
To measure public acceptance of the concept of evolution, Miller has been asking adults if “human beings, as we know them, developed from earlier species of animals” since 1985. He and his colleagues purposefully avoid using the now politically charged word “evolution” in order to determine whether people accept the basics of evolutionary theory. Over the past 20 years, the proportion of Americans who reject this concept has declined (from 48% to 39%), as has the proportion who accept it (45% to 40%). Confusion, on the other hand, has increased considerably, with those expressing uncertainty increasing from 7% in 1985 to 21% in 2005.
It's not that Americans are rejecting science per se, Miller maintains, but longstanding conflicts between personal religious beliefs and selected life-science issues has been exploited to an unprecedented degree by the right-wing fundamentalist faction of the Republican Party. In the 1990s, the state Republican platforms in Alaska, Iowa, Kansas, Oklahoma, Oregon, Missouri, and Texas all included demands for teaching creation science. Such platforms wouldn't pass muster in the election, Miller says, but in the activist-dominated primaries, they drive out moderate Republicans, making evolution a political litmus test. Come November, the Republican candidate represents a fundamentalist agenda without making it an explicit part of the campaign. Last year, Miller points out, former Senator John Danforth, a moderate Missouri Republican, wrote in a New York Times opinion piece that for the first time in American history a political party has become an arm of a religious organization. The United States is the only country in the world where a political party has taken a position on evolution.
The era of nonpartisan science is gone, says Miller, who urges scientists and science educators to learn the rules of this new game and get behind moderate Republicans as well as Democrats to protect the practice and teaching of sound science. Given the partisan attack on evolution and stem-cell research, he thinks scientists need to learn more about how the political process works. They need to be willing to run for the school board, write $500 or even $5,000 checks to support moderate candidates, and defeat Christian right-wing candidates. “Scientists need to become involved in partisan politics and to oppose candidates who reject evolution or attack scientific research,” he says. “It takes time, money, and paying attention to the issues.”
Clearly, increasing scientific literacy is a long-term challenge. The US pre-collegiate science and math education system is broken. US high-school student performance ranks behind every European and Asian country, according to the 2003 Trends in International Math and Science Study conducted by the National Center for Education Statistics. Given that over half of high-school graduates don't go on to get college degrees, that's something to be concerned about. But Miller takes heart from the fact that, unlike any other country in the world, the United States requires the 47% of kids who do go to college to take a year of science—a distinction that may help the United States recover its flagging scientific standing. College professors would do well to remember that today's undergraduates are apt to be functioning 40 to 50 years from now, he says. “It's the last chance to teach people who are going to become important leaders in the community, and we should take this opportunity seriously.”
The limiting step in enhancing scientific literacy is not people's capacity for learning, Miller says, as much as it is interest. When Americans are diagnosed with cancer or some other life-threatening disease, “the vast number of these people go online and learn more science in the next 12 months than a typical undergraduate will ever learn. It is impressive how much people can learn with the proper motivation. We need to get people to be savvy about how to find the information and make sense of it.

Miller urges scientists to take comfort in the fact that the majority of Americans are not anti-science, but simply don't know how exciting scientific discovery can be. “We must be cautious and not presume that our society feels strongly about what scientists do one way or another. There's a lot of work to be done for us to tell people what we do, why we do it, and why it's important,” he advises. Given the pace of biomedical discoveries in the 21st century, he adds, it's likely that more and more scientific issues will reach the public agenda. “We're going to be revisiting various versions of these questions again and again. But there's a large segment of Americans who still haven't made up their mind on these issues. We in the scientific community have to treat them seriously, talk to them, and make our arguments. This is a great opportunity for us.”
Bolded text is what I thought was interesting to me. As I said, go read the whole thing. The PDF version also has some graphs and images.

(Cross-posted on Science And Politics)

Technorati Tag: teaching-carnival


Post a Comment

Links to this post:

Create a Link

<< Home